Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(49): 27149-27159, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38039527

RESUMO

In cells, a vast number of membrane lipids are formed by the enzymatic O-acylation of polar head groups with acylating agents such as fatty acyl-CoAs. Although such ester-containing lipids appear to be a requirement for life on earth, it is unclear if similar types of lipids could have spontaneously formed in the absence of enzymatic machinery at the origin of life. There are few examples of enzyme-free esterification of amphiphiles in water and none that can occur in water at physiological pH using biochemically relevant acylating agents. Here we report the unexpected chemoselective O-acylation of 1,2-amino alcohol amphiphiles in water directed by Cu(II) and several other transition metal ions. In buffers containing Cu(II) ions, mixing biological 1,2-amino alcohol amphiphiles such as sphingosylphosphorylcholine with biochemically relevant acylating agents, namely, acyl adenylates and acyl-CoAs, leads to the formation of the O-acylation product with high selectivity. The resulting O-acylated sphingolipids self-assemble into vesicles with markedly different biophysical properties than those formed from their N-acyl counterparts. We also demonstrate that Cu(II) can direct the O-acylation of alternative 1,2-amino alcohols, including prebiotically relevant 1,2-amino alcohol amphiphiles, suggesting that simple mechanisms for aqueous esterification may have been prevalent on earth before the evolution of enzymes.


Assuntos
Prebióticos , Água , Esterificação , Acil Coenzima A/metabolismo , Lipídeos de Membrana , Amino Álcoois , Acilação
2.
J Am Chem Soc ; 145(50): 27521-27530, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056605

RESUMO

Giant unilamellar vesicles (GUVs) are a widely used model system to interrogate lipid phase behavior, study biomembrane mechanics, reconstitute membrane proteins, and provide a chassis for synthetic cells. It is generally assumed that the composition of individual GUVs is the same as the nominal stock composition; however, there may be significant compositional variability between individual GUVs. Although this compositional heterogeneity likely impacts phase behavior, the function and incorporation of membrane proteins, and the encapsulation of biochemical reactions, it has yet to be directly quantified. To assess heterogeneity, we use secondary ion mass spectrometry (SIMS) to probe the composition of individual GUVs using non-perturbing isotopic labels. Both 13C- and 2H-labeled lipids are incorporated into a ternary mixture, which is then used to produce GUVs via gentle hydration or electroformation. Simultaneous detection of seven different ion species via SIMS allows for the concentration of 13C- and 2H-labeled lipids in single GUVs to be quantified using calibration curves, which correlate ion intensity to composition. Additionally, the relative concentration of 13C- and 2H-labeled lipids is assessed for each GUV via the ion ratio 2H-/13C-, which is highly sensitive to compositional differences between individual GUVs and circumvents the need for calibration by using standards. Both quantification methods suggest that gentle hydration produces GUVs with greater compositional variability than those formed by electroformation. However, both gentle hydration and electroformation display standard deviations in composition (n = 30 GUVs) on the order of 1-4 mol %, consistent with variability seen in previous indirect measurements.


Assuntos
Células Artificiais , Lipossomas Unilamelares , Lipossomas Unilamelares/química , Lipídeos/química , Espectrometria de Massa de Íon Secundário , Proteínas de Membrana
3.
Chemphyschem ; 24(20): e202300404, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37486881

RESUMO

Bottom-up design of biomimetic organelles has gained recent attention as a route towards understanding the transition between non-living matter and life. Despite various artificial lipid membranes being developed, the specific relations between lipid structure, composition, interfacial properties, and morphology are not currently understood. Sponge-phase droplets contain dense, nonlamellar lipid bilayer networks that capture the complexities of the endoplasmic reticulum (ER), making them ideal artificial models of such organelles. Here, we combine ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations to investigate the interfacial H-bond networks in sponge-phase droplets composed of glycolipid and nonionic detergents. In the sponge phase, the interfacial environments are more hydrated and water molecules confined to the nanometer-scale aqueous channels in the sponge phase exhibit dynamics that are significantly slower compared to bulk water. Surfactant configurations and microscopic phase separation play a dominant role in determining membrane curvature and slow dynamics observed in the sponge phase. The studies suggest that H-bond networks within the nanometer-scale channels are disrupted not only by confinement but also by the interactions of surfactants, which extend 1-2 nm from the bilayer surface. The results provide a molecular-level description for controlling phase and morphology in the design of synthetic lipid organelles.


Assuntos
Células Artificiais , Gotículas Lipídicas , Espectrofotometria Infravermelho/métodos , Ligação de Hidrogênio , Água/química , Tensoativos/química , Glicolipídeos
4.
Front Health Serv ; 3: 1187306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383486

RESUMO

Long-standing inequities in healthcare access and outcomes exist for underserved populations. Public-private partnerships (PPPs) are where the government and a private entity jointly invest in the provision of public services. Using examples from the Health Equity Consortium (HEC), we describe how technology was used to facilitate collaborations between public and private entities to address health misinformation, reduce vaccine hesitancy, and increase access to primary care services across various underserved communities during the COVID-19 pandemic. We call out four enablers of effective collaboration within the HEC-led PPP model, including: 1. Establishing trust in the population to be served 2. Enabling bidirectional flow of data and information 3. Mutual value creation and 4. Applying analytics and AI to help solve complex problems. Continued evaluation and improvements to the HEC-led PPP model are needed to address post-COVID-19 sustainability.

5.
Emerg Top Life Sci ; 6(6): 571-582, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36377774

RESUMO

Archaea constitute one of the three fundamental domains of life. Archaea possess unique lipids in their cell membranes which distinguish them from bacteria and eukaryotes. This difference in lipid composition is referred to as 'Lipid Divide' and its origins remain elusive. Chemical inertness and the highly branched nature of the archaeal lipids afford the membranes stability against extremes of temperature, pH, and salinity. Based on the molecular architecture, archaeal polar lipids are of two types - monopolar and bipolar. Both monopolar and bipolar lipids have been shown to form vesicles and other well-defined membrane architectures. Bipolar archaeal lipids are among the most unique lipids found in nature because of their membrane-spanning nature and mechanical stability. The majority of the self-assembly studies on archaeal lipids have been carried out using crude polar lipid extracts or molecular mimics. The complexity of the archaeal lipids makes them challenging to synthesize chemically, and as a result, studies on pure lipids are few. There is an ongoing effort to develop simplified routes to synthesize complex archaeal lipids to facilitate diverse biophysical studies and pharmaceutical applications. Investigation on archaeal lipids may help us understand how life survives in extreme conditions and therefore unlock some of the mysteries surrounding the origins of cellular life.


Assuntos
Archaea , Lipídeos de Membrana , Archaea/química , Archaea/metabolismo , Lipídeos de Membrana/análise , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Bactérias/química , Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo
6.
J Am Chem Soc ; 143(29): 11235-11242, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34260248

RESUMO

Despite the central importance of lipid membranes in cellular organization, it is challenging to reconstitute their formation de novo from minimal chemical and biological elements. Here, we describe a chemoenzymatic route to membrane-forming noncanonical phospholipids in which cysteine-modified lysolipids undergo spontaneous coupling with fatty acyl-CoA thioesters generated enzymatically by a fatty acyl-CoA ligase. Due to the high efficiency of the reaction, we were able to optimize phospholipid formation in a cell-free transcription-translation (TX-TL) system. Combining DNA encoding the fatty acyl-CoA ligase with suitable lipid precursors enabled one-pot de novo synthesis of membrane-bound vesicles. Noncanonical sphingolipid synthesis was also possible by using a cysteine-modified lysosphingomyelin as a precursor. When the sphingomyelin-interacting protein lysenin was coexpressed alongside the acyl-CoA ligase, the in situ assembled membranes were spontaneously decorated with protein. Our strategy of coupling gene expression with membrane lipid synthesis in a one-pot fashion could facilitate the generation of proteoliposomes and brings us closer to the bottom-up generation of synthetic cells using recombinant synthetic biology platforms.


Assuntos
Sistema Livre de Células/metabolismo , Coenzima A Ligases/metabolismo , Lipídeos de Membrana/metabolismo , Sistema Livre de Células/química , Coenzima A Ligases/química , Coenzima A Ligases/genética , Humanos , Lipídeos de Membrana/química
7.
Angew Chem Int Ed Engl ; 60(32): 17491-17496, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33930240

RESUMO

Archaeal glycerol dibiphytanyl glycerol tetraethers (GDGT) are some of the most unusual membrane lipids identified in nature. These amphiphiles are the major constituents of the membranes of numerous Archaea, some of which are extremophilic organisms. Due to their unique structures, there has been significant interest in studying both the biophysical properties and the biosynthesis of these molecules. However, these studies have thus far been hampered by limited access to chemically pure samples. Herein, we report a concise and stereoselective synthesis of the archaeal tetraether lipid parallel GDGT-0 and the synthesis and self-assembly of derivatives bearing different polar groups.


Assuntos
Éteres de Glicerila/síntese química , Lipídeos de Membrana/síntese química , Archaea/química , Estereoisomerismo
8.
Nat Chem ; 12(11): 1029-1034, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33046841

RESUMO

All living organisms synthesize phospholipids as the primary constituent of their cell membranes. Enzymatic synthesis of diacylphospholipids requires preexisting membrane-embedded enzymes. This limitation has led to models of early life in which the first cells used simpler types of membrane building blocks and has hampered integration of phospholipid synthesis into artificial cells. Here we demonstrate an enzyme-free synthesis of natural diacylphospholipids by transacylation in water, which is enabled by a combination of ion pairing and self-assembly between lysophospholipids and acyl donors. A variety of membrane-forming cellular phospholipids have been obtained in high yields. Membrane formation takes place in water from natural alkaline sources such as soda lakes and hydrothermal oceanic vents. When formed vesicles are transferred to more acidic solutions, electrochemical proton gradients are spontaneously established and maintained. This high-yielding non-enzymatic synthesis of natural phospholipids in water opens up new routes for lipid synthesis in artificial cells and sheds light on the origin and evolution of cellular membranes.


Assuntos
Fosfolipídeos/química , Fosfolipídeos/síntese química , Acilação , Células Artificiais , Membrana Celular/metabolismo , Fosfolipídeos/metabolismo , Biossíntese de Proteínas , Água/química
9.
Proc Natl Acad Sci U S A ; 117(31): 18206-18215, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694212

RESUMO

Living cells segregate molecules and reactions in various subcellular compartments known as organelles. Spatial organization is likely essential for expanding the biochemical functions of synthetic reaction systems, including artificial cells. Many studies have attempted to mimic organelle functions using lamellar membrane-bound vesicles. However, vesicles typically suffer from highly limited transport across the membranes and an inability to mimic the dense membrane networks typically found in organelles such as the endoplasmic reticulum. Here, we describe programmable synthetic organelles based on highly stable nonlamellar sponge phase droplets that spontaneously assemble from a single-chain galactolipid and nonionic detergents. Due to their nanoporous structure, lipid sponge droplets readily exchange materials with the surrounding environment. In addition, the sponge phase contains a dense network of lipid bilayers and nanometric aqueous channels, which allows different classes of molecules to partition based on their size, polarity, and specific binding motifs. The sequestration of biologically relevant macromolecules can be programmed by the addition of suitably functionalized amphiphiles to the droplets. We demonstrate that droplets can harbor functional soluble and transmembrane proteins, allowing for the colocalization and concentration of enzymes and substrates to enhance reaction rates. Droplets protect bound proteins from proteases, and these interactions can be engineered to be reversible and optically controlled. Our results show that lipid sponge droplets permit the facile integration of membrane-rich environments and self-assembling spatial organization with biochemical reaction systems.


Assuntos
Galactolipídeos/química , Gotículas Lipídicas , Organelas/química , Engenharia Química , Detergentes , Bicamadas Lipídicas , Peptídeo Hidrolases , Proteínas/química , Proteínas/metabolismo
10.
J Phys Chem B ; 124(26): 5426-5433, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32437154

RESUMO

Amphiphilic molecules self-assemble into supramolecular structures of various sizes and morphologies depending on their molecular packing and external factors. Transformations between various self-assembled morphologies are a matter of great fundamental interest. Recently, we reported the discovery of a novel class of single-chain galactopyranosylamide amphiphiles that self-assemble to form vesicles in water. Here, we describe how the vesicles composed of the amphiphile N-oleoyl ß-d-galactopyranosylamine (GOA) undergo a morphological transition to fibers consisting of mainly flat sheet-like structures. Moreover, we show that this transformation is reversible in a temperature-dependent manner. We used several optical microscopy and electron microscopy techniques, circular dichroism spectroscopy, small-angle X-ray scattering, and differential scanning calorimetry, to fully investigate and characterize the morphological transformations of GOA and provide a structural basis for such phenomena. These studies provide significant molecular insight into the structural polymorphism of sugar-based amphiphiles and foresee future applications in rational design of self-assembled materials.


Assuntos
Água , Varredura Diferencial de Calorimetria , Temperatura
11.
ACS Nano ; 13(7): 7396-7401, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31298028

RESUMO

Living cells achieve precise control of shape and size through sophisticated biochemical machinery. However, such precision is extremely challenging to emulate in artificial cellular compartments. So far, various physicochemical and mechanical interventions have been employed to tailor the dimensions of model systems such as liposomes, emulsions, coacervates, and polymer capsules. In this Perspective, we discuss the state of the art in artificial cell research in controlling shape and size and the challenges that need to be addressed.


Assuntos
Células Artificiais , Tamanho da Partícula , Propriedades de Superfície
12.
J Phys Chem B ; 123(17): 3711-3720, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30964979

RESUMO

Amphiphilic molecules undergo self-assembly in aqueous medium to yield various supramolecular structures depending on their chemical structure and molecular geometry. Among these, lamellar membrane-bound vesicles are of special interest due to their resemblance to cellular membranes. Here we describe the self-assembly of single-chain amide-linked amphiphiles derived from ß-d-galactopyranosylamine and various unsaturated fatty acids into vesicles. In contrast, the analogous amphiphiles derived from ß-d-glucopyranosylamine self-assemble into nanotubes. Fluorescence spectroscopy, X-ray diffraction, and differential scanning calorimetry are used to determine various physical parameters pertinent to the self-assembly process. The vesicular architecture is characterized using optical microscopy and transmission electron microscopy. Moreover, we show that the vesicles derived from these amphiphiles can encapsulate molecules of various sizes and host model biochemical reactions. Our work demonstrates that single-chain glycolipid-based amphiphiles could serve as robust building blocks for artificial cells and have potential applications in drug delivery and microreactor design.


Assuntos
Amidas/química , Células Artificiais , Ácidos Graxos Insaturados/química , Piranos/química , Amidas/síntese química , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Transmissão , Nanotubos/química , Tamanho da Partícula , Piranos/síntese química , Espectrometria de Fluorescência , Propriedades de Superfície , Difração de Raios X
13.
Nat Commun ; 10(1): 300, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655537

RESUMO

All living cells consist of membrane compartments, which are mainly composed of phospholipids. Phospholipid synthesis is catalyzed by membrane-bound enzymes, which themselves require pre-existing membranes for function. Thus, the principle of membrane continuity creates a paradox when considering how the first biochemical membrane-synthesis machinery arose and has hampered efforts to develop simplified pathways for membrane generation in synthetic cells. Here, we develop a high-yielding strategy for de novo formation and growth of phospholipid membranes by repurposing a soluble enzyme FadD10 to form fatty acyl adenylates that react with amine-functionalized lysolipids to form phospholipids. Continuous supply of fresh precursors needed for lipid synthesis enables the growth of vesicles encapsulating FadD10. Using a minimal transcription/translation system, phospholipid vesicles are generated de novo in the presence of DNA encoding FadD10. Our findings suggest that alternate chemistries can produce and maintain synthetic phospholipid membranes and provides a strategy for generating membrane-based materials.


Assuntos
Proteínas de Bactérias/metabolismo , Biotecnologia/métodos , Membrana Celular/química , Coenzima A Ligases/metabolismo , Fosfolipídeos/síntese química , Proteínas de Bactérias/isolamento & purificação , Membrana Celular/ultraestrutura , Coenzima A Ligases/isolamento & purificação , Microfluídica/métodos , Microscopia Eletrônica de Transmissão , Mycobacterium tuberculosis , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
14.
J Am Chem Soc ; 140(50): 17356-17360, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30495932

RESUMO

Single-chain amphiphiles (SCAs) that self-assemble into large vesicular structures are attractive components of synthetic cells because of the simplicity of bilayer formation and increased membrane permeability. However, SCAs commonly used for vesicle formation suffer from restricted working pH ranges, instability to divalent cations, and the inhibition of biocatalysts. Construction of more robust biocompatible membranes from SCAs would have significant benefits. We describe the formation of highly stable vesicles from alkyl galactopyranose thioesters. The compatibility of these uncharged SCAs with biomolecules makes possible the encapsulation of functional enzymes and nucleic acids during the vesicle generation process, enabling membrane protein reconstitution and compartmentalized nucleic acid amplification, even when charged precursors are supplied externally.


Assuntos
Células Artificiais/química , Glicolipídeos/química , Bicamadas Lipídicas/química , Tiogalactosídeos/química , Animais , Bovinos , Permeabilidade da Membrana Celular , DNA/genética , Replicação do DNA , Complexo IV da Cadeia de Transporte de Elétrons/química , Glicolipídeos/síntese química , Bicamadas Lipídicas/síntese química , Tensoativos/síntese química , Tensoativos/química , Tiogalactosídeos/síntese química
15.
Langmuir ; 34(3): 750-755, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28982007

RESUMO

A major goal of synthetic biology is the development of rational methodologies to construct self-assembling non-natural membranes, which could enable the efficient fabrication of artificial cellular systems from purely synthetic components. However, spatiotemporal control of artificial membrane formation remains both challenging and limited in scope. Here, we describe a new methodology to promote biomimetic phospholipid membrane formation by the photochemical activation of a catalyst-sensitizer dyad via an intramolecular photoinduced electron-transfer process. Our results offer future opportunities to exert spatiotemporal control over artificial cellular constructs.


Assuntos
Biomimética/métodos , Elétrons , Membranas Artificiais , Fosfolipídeos/química
16.
Org Biomol Chem ; 15(25): 5364-5372, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28617508

RESUMO

A series of 6,6-dihalo-2-azabicyclo[3.1.0]hexane and 7,7-dihalo-2-azabicyclo[4.1.0]heptane compounds were prepared by the reaction of dihalocarbene species with N-Boc-2,3-dihydro-1H-pyrroles or -1,2,3,4-tetrahydropyridines. Monochloro substrates were synthesised as well, using a chlorine-to-lithium exchange reaction. The behaviour of several aldehydes and ketones under reductive amination conditions with deprotected halogenated secondary cyclopropylamines was investigated, showing that this transformation typically triggers cyclopropane ring cleavage to give access to interesting nitrogen-containing ring-expanded products.

17.
Chem Sci ; 8(12): 7912-7922, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29619165

RESUMO

The assembly of artificial cells provides a novel strategy to reconstruct life's functions and shed light on how life emerged on Earth and possibly elsewhere. A major challenge to the development of artificial cells is the establishment of simple methodologies to mimic native membrane generation. An ambitious strategy is the bottom-up approach, which aims to systematically control the assembly of highly ordered membrane architectures with defined functionality. This perspective will cover recent advances and the current state-of-the-art of minimal lipid architectures that can faithfully reconstruct the structure and function of living cells. Specifically, we will overview work related to the de novo formation and growth of biomimetic membranes. These studies give us a deeper understanding of the nature of living systems and bring new insights into the origin of cellular life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...